
Chapter 1

Basics

We start with some important background material in classical and quantum me-
chanics.

1.1 Classical mechanics

Lagrangian mechanics

Compared to Newtonian mechanics, Lagrangian mechanics has the advantage that
we can use arbitrary sets of generalised coordinates to describe our system and our
fundamental equations always have the same form. Let us denote the coordinates
by q1, q2, . . . , qn and assemble them into a vector q. Then the motion of the system
is described by the function q(t). We now need the Lagrangian which the difference
of the kinetic energy T and the potential energy U expressed as a function of q, q̇,
and time,

L(q, q̇, t) = T − U.

Then the equations of motion are

∂L

∂qα
=

d

dt

∂L

∂q̇α
.

To give an interpretation of the Lagrange equations we define the action of a tra-
jectory (followed between times t1 and t2) as

S[q] =

∫ t2

t1

L(q(t), q̇(t), t)dt.

Here the square brackets highlight that the argument of S is a function. Now one
can show that the Lagrange equations are equivalent to demanding that S[q] is sta-
tionary w.r.t. variations of the function q(t) that preserve the boundary conditions,
i.e., the values of q(t) at t = t1 and t = t2.
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Hamiltonian mechanics

Hamiltonian mechanics is formulated in phase space, i.e., the fundamental variables
are q and the momenta defined by

p =
∂L

∂q̇
.

Instead of the Lagrangian we consider the Hamiltonian

H(q,p, t) = p · q̇ − L .

The corresponding equations of motion are

q̇α =
∂H

∂pα
, ṗα = −∂H

∂qα
.

1.2 Quantum mechanics

In quantum mechanics the variables qα, pα are replaced by operators q̂α, p̂α acting on
wavefunctions. In position representation the operator q̂α simply amounts to mul-
tiplication of the wavefunction with its parameter qα and the momentum operator
is p̂α = ~

i
∂
∂qα

. The dynamics of the wavefunctions is then given by the Schrödinger
equation

Ĥψ(q, t) = i~
∂

∂t
ψ(q, t)

where the quantum mechanical Hamiltonian is obtained from the classical Hamil-
tonian by replacing all q’s and p’s by operators. As we will usually use Cartesian
coordinates we will replace q by r from now on.

We now go on to highlight some aspects of quantum mechanics that will be impor-
tant for this course.

Bra-ket notation

In bra-ket or Dirac notation wavefunctions ψ(r) are denoted by ”kets” |ψ〉. The
scalar product of two wavefunctions φ(r) and ψ(r) is then denoted by∫

Rn
φ∗(r)ψ(r)dnr = 〈φ|ψ〉.

I.e. the ”bra” 〈φ| applied to a wavefunction indicates multiplication with the com-
plex conjugate of the φ(r) and subsequent integration.

When dealing with eigenstates in bra-ket notation, one sometimes writes the corre-
sponding eigenvalue in the bracket.

The delta ”function”

Definition. The ”function” δ(r) is informally defined as follows:
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• It vanishes for r 6= 0.

• It diverges at r = 0.

• If we integrate over it multiplied with a different function f(r) we get∫
Rn
f(r)δ(r)dnr = f(0).

These properties also imply
∫
f(r)δ(r − r′)dnr = f(r′). A mathematically re-

spectable way of defining delta ”functions” is based on the theory of distributions1

however it is convenient to work with them as with usual functions.

Position eigenfunctions. δ(r) can be interpreted as a wavefunction. As it is
nonvanishing only for r = 0 a particle with this wavefunction is localised as the ori-
gin. In other words, δ(r) is an eigenfunction of the position operator with eigenvalue
zero.

Similarly δ(r − r′) is nonvanishing only for r = r′ and forms an eigenfunction of
the position operator with eigenvalue r′.2 It can also be written as the ket |r′〉.

We note that the position eigenfunctions are a bit different from other eigenfunc-
tions as they are distributions rather than proper functions, and there is one for
every possible r so they do not form a discrete set parametrised by integers. One
consequence of this is that they cannot be normalised to have 〈r|r〉 = 1.

1Remark (not examinable). Distributions are mappings from a space of test functions F to R.
One often uses

F = {f ∈ C∞(Rn) : (1 + |r|2)kf(r) is bounded for all k ∈ N}.

Functions g : Rn → R give rise to distributions

Dg : F → R

Dg[f ] =

∫
Rn

f(r)g(r)dnr ∈ R (1.1)

where f ∈ F . The δ-distribution maps each function f ∈ F to its value at zero

Dδ : F → R
Dδ[f ] = f(0) .

We now use the following notation motivated by (1.1)

Dδ[f ] =

∫
Rn

f(r)δ(r)dnr .

We thus work with the δ-distribution as we would work with a function.
2To see this formally, first for one dimensional systems, we note that an eigenfunction of the

position operator with eigenvalue r′ has to satisfy

r̂ψ(r) = r′ψ(r).

This is solved by ψ(r) = δ(r − r′) as

r̂δ(r − r′) = rδ(r − r′) = r′δ(r − r′) .

Here the second equality is trivially correct if r = r′. It is also correct if r 6= r′ as in that case
δ(r − r′) = 0. The same argument can be used for vector valued r.
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Application of 〈r′|. Applying the bra 〈r′| to a quantum state |ψ〉 simply means
to write down the wavefunction at position r′ as

〈r′|ψ〉 =

∫
δ(r − r′)ψ(r)dnr = ψ(r′).

Integral representation of the delta function. The delta function can be
obtained from the following integral (see problem sheet 1)

1

2π~

∫ ∞
−∞

eipr/~dp = δ(r).

The analogous formula for r ∈ Rn is

1

(2π~)n

∫
Rn
eip·r/~dnp = δ(r). (1.2)

Resolution of the identity

If the states |m〉 form a discrete orthonormal basis it was shown in 3rd year Quantum
Mechanics that the identity operator can be written as

1 =
∑
m

|m〉〈m|.

We will later need an analogous result for position eigenstates. As these states form
a continuous rather than a discrete basis the result for this case involves an integral:

1 =

∫
|r〉〈r|dnr (1.3)

To prove this result we consider matrix elements where the r.h.s. is sandwiched
between two arbitrary states 〈φ| and |ψ〉. We then have

〈φ|
(∫
|r〉〈r|dnr

)
|ψ〉 =

∫
〈φ|r〉〈r|ψ〉dnr =

∫
φ(r)∗ψ(r)dnr = 〈φ|ψ〉 = 〈φ|1|ψ〉

proving our claim.

Time evolution in quantum mechanics

A formal solution of the Schrödinger equation

Ĥψ(r, t) = i~
∂

∂t
ψ(r, t)

is

ψ(r, t) = e−
i
~ Ĥtψ(r, 0) (1.4)
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This result is obtained heuristically if we momentarily forget that Ĥ is an operator
and we integrate as if it were, say, a real number. If we want the result to be true for
operators we first of all have to define what an exponential of an operator means.
We can define such exponentials through the Taylor series of the the exponential,
as in

e−
i
~ Ĥt =

∞∑
n=0

1

n!

(
− i
~
Ĥt

)n
.

Here Ĥn is the operator obtained by applying Ĥ n times. e−
i
~ Ĥt is also referred to

as the time evolution operator.

Proof: Now we prove (1.4). Using that the derivative of the operator exponential
defined above obeys the same rules as the derivative of a usual exponential we get

i~
∂

∂t

(
e−

i
~ Ĥtψ(r, 0)

)
= i~

(
− i
~
Ĥ

)(
e−

i
~ Ĥtψ(r, 0)

)
= Ĥ

(
e−

i
~ Ĥtψ(r, 0)

)
which means that the Schrödinger equation is satisfied. Moreover the claimed for-
mula for ψ(r, t) reduces to ψ(r, 0) if we insert t = 0.

Propagator. To describe the time evolution of a quantum system it is helpful
to consider the propagator, defined by the matrix elements of the time evolution
operator,

K(rf , r0, t) = 〈rf |e−
i
~ Ĥt|r0〉.

The propagator represents a state starting with |r0〉, i.e., a delta function located
at r0, at time 0. Then this state evolves according to the Schrödinger equation over

a time interval t, as expressed by the time evolution operator e−
i
~ Ĥt. Applying 〈rf |

means that we are considering the resulting wavefunction at the position rf .


