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The homework for Advanced Quantum Theory will be set from this handout, from Thursdays to Thurs-
day in the following week at 4pm.

This document also contains past exam questions for the course, and a few selected solutions to questions
that I am not planning to set as homework (e.g. for students who want to see additional solved problems
before starting their homework).

All course material is provided for educational purposes at the University of Bristol and is to be down-
loaded or copied for your private study only.

1 Basics

1.1 Stationarity of the action in Hamiltonian mechanics

The analogue of the action in Hamiltonian mechanics is

S[q,p] =

∫ t2

t1

(p(t′) · q̇(t′)−H(q(t′),p(t′))dt′

where H(q,p) is the Hamiltonian of the system. Using the Euler-Lagrange equations from Mechanics
2/23 determine the conditions under which S[q,p] is stationary w.r.t. variations of the functions q(t)
and p(t) that preserve the boundary conditions at t1 and t2.

1.2 A representation of the delta function

Show that
1

2πℏ

∫ ∞

−∞
eipx/ℏdp = δ(x).

Possible ways to solve this problem are

(a) Consider
1

2πℏ
lim
a→0

∫ ∞

−∞
eipx/ℏ−ap2dp

and use that

lim
ϵ→0

1√
πϵ
e−y2/ϵ = δ(y).

(b) Use that subsequent application of the Fourier transform and the inverse Fourier transform to a
function returns the function we started from.
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2 Feynman path integral

2.1 Path integral in phase space

Show that the propagator of a quantum system can be written as

K(rf , r0, t) =

∫
D[r]D[p] exp

(
i

ℏ

∫ t

0
(p(t′) · ṙ(t′)−H(r(t′),p(t′))dt′

)
Here the integral is taken over all functions r(t′) with r(0) = r0 and r(t) = rf , and over all functions
p(t′) regardless of boundary conditions.
To solve this problem use the result

K(rf , r0, t) =

∫
dnr1 . . .

∫
dnrN−1

N−1∏
j=0

⟨rj+1|e−
i
ℏ Ĥτ |rj⟩

from the lecture (with rN := rf ), as well as an expression for ⟨rj |e−
i
ℏ Ĥτ |rj−1⟩ where the integral

over the momentum has not been evaluated, such that momenta for the different time steps remain as
integration variables in the final result.

Note that the integration measure will be different from the D[r] appearing in the position-space path
integral. Your calculation should give the appropriate meaning of

∫
D[r]D[p] . . . .

2.2 Propagator for the harmonic oscillator

In the lecture we determined the propagator for the harmonic oscillator. Check explicitly that the
obtained result satisfies the Schrödinger equation(

− ℏ2

2m

∂2

∂x2f
+

1

2
mω2x2f

)
K(xf , x0, t) = iℏ

∂

∂t
K(xf , x0, t)

and that it satisfies K(xf , x0, 0) = ⟨xf |x0⟩ = δ(xf − x0). It may be helpful to use

lim
ϵ→0

1√
iπϵ

eiy
2/ϵ = δ(y).

2.3 Propagator for a free particle

Evaluate the path integral for the propagator of a particle moving freely in one dimension without
potential, i.e., a particle with the Lagrangian L = 1

2mẋ
2.

Hints: As for the harmonic oscillator, split x(t′) into the classical solution xcl(t
′) and the deviation

δx(t′) from this solution. Then work with the discretised version of the position-space path integral,
and show that the action S[δx] can be written as

S[δx] = δx ·Aδx

where δx is a vector whose components are the values of δx at the time steps and A is a real symmetric
matrix. Moreover you can use that for such a matrix we have∫ ∞

−∞

∫ ∞

−∞
. . .

∫ ∞

−∞
exp (iδx ·Aδx) dδx1dδx2 . . . dδxν =

(
(iπ)ν

detA

)1/2

.
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(how do we have to choose ν for our problem?) and that the ν × ν matrix of the form

Bν =


2 −1 0 · · · 0
−1 2 −1 · · · 0
0 −1 2 · · · 0
...

...
...

. . . −1
0 0 0 −1 2


has the determinant detBν = ν + 1.

2.4 Free particle in Hamiltonian mechanics

Evaluate the Hamiltonian version of the path integral for the propagator of a particle moving freely in

one dimension without potential, i.e., a particle with the Hamiltonian H = p2

2m .

2.5 Short-time propagator [2019 exam]

We consider a one dimensional system whose potential U is an arbitrary function of the position x and
whose kinetic energy T is an arbitrary function of the momentum p. Show that for short times t the
corresponding propagator can be approximated by

K(xf , x0, t) ≈
1

2πℏ

∫ ∞

−∞
dp exp

(
i

ℏ

[
p
xf − x0

t
− T (p)− U(x0)

]
t

)
where the two sides agree neglecting corrections of order t2 and higher.

2.6 Propagator in momentum basis [2021 exam]

(a) We consider a one-dimensional system with the Hamiltonian

Ĥ =
1

2
p̂2 + U(x̂)

where p̂ is the momentum operator and x̂ is the position operator. Derive an expression for

⟨pf |e−
i
ℏ Ĥt|p0⟩

where |p0⟩ and |pf ⟩ are eigenstates of the momentum with eigenvalues p0 and pf . Your expression
should be valid for short times t, neglecting terms of order t2 and higher, and it should involve
a single integral over positions. You can use that the wavefunction associated to a momentum
eigenstate |p⟩ is ψp(x) =

1√
2πℏ

eipx/ℏ.

(b) Use the results of (a) to derive an expression for ⟨pf |e−
i
ℏ Ĥt|p0⟩ that holds for arbitrary times and

involves a path integral in phase space.
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